8 research outputs found

    Spatial Wireless Channel Prediction under Location Uncertainty

    Full text link
    Spatial wireless channel prediction is important for future wireless networks, and in particular for proactive resource allocation at different layers of the protocol stack. Various sources of uncertainty must be accounted for during modeling and to provide robust predictions. We investigate two channel prediction frameworks, classical Gaussian processes (cGP) and uncertain Gaussian processes (uGP), and analyze the impact of location uncertainty during learning/training and prediction/testing, for scenarios where measurements uncertainty are dominated by large-scale fading. We observe that cGP generally fails both in terms of learning the channel parameters and in predicting the channel in the presence of location uncertainties.\textcolor{blue}{{} }In contrast, uGP explicitly considers the location uncertainty. Using simulated data, we show that uGP is able to learn and predict the wireless channel

    FuSSI-Net: Fusion of Spatio-temporal Skeletons for Intention Prediction Network

    Full text link
    Pedestrian intention recognition is very important to develop robust and safe autonomous driving (AD) and advanced driver assistance systems (ADAS) functionalities for urban driving. In this work, we develop an end-to-end pedestrian intention framework that performs well on day- and night- time scenarios. Our framework relies on objection detection bounding boxes combined with skeletal features of human pose. We study early, late, and combined (early and late) fusion mechanisms to exploit the skeletal features and reduce false positives as well to improve the intention prediction performance. The early fusion mechanism results in AP of 0.89 and precision/recall of 0.79/0.89 for pedestrian intention classification. Furthermore, we propose three new metrics to properly evaluate the pedestrian intention systems. Under these new evaluation metrics for the intention prediction, the proposed end-to-end network offers accurate pedestrian intention up to half a second ahead of the actual risky maneuver.Comment: 5 pages, 6 figures, 5 tables, IEEE Asilomar SS

    Spatial Wireless Channel Prediction under Location Uncertainty

    No full text

    AV-SLAM: Autonomous vehicle SLAM with gravity direction initialization

    No full text
    Simultaneous localization and mapping (SLAM) algorithms aimed for autonomous vehicles (AVs) are required to utilize sensor redundancies specific to AVs and enable accurate, fast and repeatable estimations of pose and path trajectories. In this work, we present a combination of three SLAM algorithms that utilize a different subset of available sensors such as inertial measurement unit (IMU), a gray-scale mono-camera, and a Lidar. Also, we propose a novel acceleration-based gravity direction initialization (AGI) method for the visual-inertial SLAM algorithm. We analyze the SLAM algorithms and initialization methods for pose estimation accuracy, speed of convergence and repeatability on the KITTI odometry sequences. The proposed VI-SLAM with AGI method achieves relative pose errors less than 2%, convergence in half a minute or less and convergence time variability less than 3s, which makes it preferable for AVs

    Amortized Variational Inference for Road Friction Estimation

    No full text
    Road friction estimation concerns inference of the coefficient between the tire and road surface to facilitate active safety features. Current state-of-the-art methods lack generalization capability to cope with different tire characteristics and models are restricted when using Bayesian inference in estimation while recent supervised learning methods lack uncertainty prediction on estimates. This paper introduces variational inference to approximate intractable posterior of friction estimates and learns an amortized variational inference model from tire measurement data to facilitate probabilistic estimation while sustaining the flexibility of tire models. As a by-product, a probabilistic tire model can be learned jointly with friction estimator model. Experiments on simulated and field test data show that the learned friction estimator provides accurate estimates with robust uncertainty measures in a wide range of tire excitation levels. Meanwhile, the learned tire model reflects well-studied tire characteristics from field test data

    MAC Delay in Belief Consensus for Distributed Tracking

    No full text
    In target tracking applications where many sensors must have a common view of the target’s state, distributed particle filtering with belief consensus is an attractive solution. It allows for a fully distributed, scalable solution, guarantees exact consensus in connected networks, and convergences fast for network with high connectivity. However, for medium access control, high connectivity is detrimental, possibly leading to a different convergence/performance trade-off. We study the delay/performance trade-off of distributed particle filtering with belief consensus in the presence of time division medium access control. We found that for small networks, (i) the impact of max-consensus should be accounted for; (ii) a simple schedule combined with a large communication range gives the best delay/performance trade-off.COOPLO

    Location-Aided Pilot Contamination Avoidance for Massive MIMO Systems

    Get PDF
    Pilot contamination, defined as the interference during the channel estimation process due to reusing the same pilot sequences in neighboring cells, can severely degrade the performance of massive multiple-input multiple-output systems. In this paper, we propose a location-based approach to mitigating the pilot contamination problem for uplink multiple-input multiple-output systems. Our approach makes use of the approximate locations of mobile devices to provide good estimates of the channel statistics between the mobile devices and their corresponding base stations. Specifically, we aim at avoiding pilot contamination even when the number of base station antennas is not very large, and when multiple users from different cells, or even in the same cell, are assigned the same pilot sequence. First, we characterize a desired angular region of the target user at the serving base station based on the number of base station antennas and the location of the target user, and make the observation that in this region the interference is close to zero due to the spatial separability. Second, based on this observation, we propose pilot coordination methods for multi-user multi-cell scenarios to avoid pilot contamination. The numerical results indicate that the proposed pilot contamination avoidance schemes enhance the quality of the channel estimation and thereby improve the per-cell sum rate offered by target base stations.Peer reviewe
    corecore